

Measuring Femoral and Tibial Torsion in Children with Cerebral Palsy

Brian Po-Jung Chen

Contents

Introduction	2
Natural History and Methods Natural History Methods	2
Natural History	2
Methods	2
Natural Pathophysiology: Measuring Tibial Torsion Physical Examination	3
Physical Examination	3
Imaging Technology	4
Three-Dimensional Motion Analysis	
Natural Pathophysiology: Measuring Femoral Torsion	11
Physical Examination	11
Imaging Technology	12
Three-Dimensional Motion Analysis	16
Conclusion	16
Deferences	1.7

Abstract

Lower limb torsional deformity is one of the most common musculoskeletal pathologies in children with cerebral palsy. Lower limb torsional deformity may cause many functional issues, such as problems of intoeing or out-toeing gait pattern and decreased energy efficiency during walking. Understanding more about how the rotational profile should be measured and the measurement accuracy

enables more precise location of the deformity and should improve clinical treatment decision-making. In this chapter, we are going to discuss the measuring techniques for lower limb torsional deformities, specifically tibial torsion and femoral anteversion or torsion, which are described in the literature. Methods including physical examination, imaging study, and three-dimensional motion analysis are reviewed and discussed. Understanding the wide range of measurement options are important when assessing lower extremity torsional problem and planning treatment options for the musculoskeletal pathology in cerebral palsy.

B. P.-J. Chen (⊠)

Department of Pediatric Orthopedics and Traumatology, Poznań University of Medical Sciences, Poznań, Poland e-mail: brianchen.md@icloud.com